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Abstract: The purpose of this study was to test a new method to predict the kinematics of center of mass (COM) during the 
take-off phase of the handball shot by mean of multilayer perceptron neural networks (MLPs) based on data from only the 
force platform. Ten trials’ of handball jump shot data from the force platform were obtained. The kinetic data of jump shot 
trials (force, impulse, and work) were used to feed the net and the data from the force platform kinematics (acceleration, 
velocity, and displacement) was used to evaluate the production data of the MLP neural network model. A commercial artificial 
neural network software was used to predict the target kinematic parameters (NeuroDimension, 2014®). The Pearson 
correlations of all Kinetics parameters between the original and production data was >0.99. The MLPs model successfully 
predicted the target kinematics depending on kinetics in the handball jump shot under the conditions of this study. 
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1. Introduction 

In sports, players choose their actions based on the game 
situation. Handball players usually have constantly evolving 
skills and tactics in various game situations. Therefore, they 
need to obtain high levels of coordination of their movements 
to run, jump, push, change direction, pass, catch, shoot, check 
and block [1]. Thus, determining the factors that influence 
performance in team handball based on scientific studies 
would be a valuable contribution towards increasing the 
quality of training for coaches and practitioners; in addition to 
develop specific measuring methods and tests for scientific 
studies [1]. 

In handball competition, 73–75% of all throws are jump 
throws, [2]. Gorostiaga et al. (2005) analyzed the 
performances of team handball players in different levels and 
concluded that age and body weight contributed significantly 
to differences in ball release speed during throws [3]. And 
Wagner et al. (2010) found significant differences in the ball 
release speed in jump throws, in addition to differences in 

body height and weight across various performance levels [4]. 
These studies suggest that jump height for throws may be 
considered one of the important parameters in team handball. 
A high jump offers a good position to throw over the block of 
the rival defender. This happens when players shoot from the 
back court position or have more time for a shot (an increase 
in flight time) and when attempting to react the goalkeeper 
actions [1]. 

On the other hand, the center of mass (COM) excursions 
yield the best conditions for mastering balance and keeping 
the lower body more stable and effective. Additionally, the 
maximum change in COM velocity is considered an important 
parameter that is potentially related to performance [5]. The 
force of COM considers relevant information that exists while 
performing sport techniques [6]. 

Models may be used to address the forward and inverse 
dynamic problems in human movement. In forward dynamic 
problems, the driving forces are specified and the problem is 
to determine the kinematics of motion. In the inverse dynamic 
problems, the kinematics of motion are specified and the 



36 Abdel-Rahman Ibrahim Akl and Amr Abdulfattah Hassan:  An Artificial Neural Network Approach for  
Predicting Kinematics in Handball Throws 

problem is to determine the driving forces that produced the 
motion [7, 8]. 

Several computer simulation methods have been proposed 
in order to model human motion [9]. First, kinematic models 
consist of defining a mathematical expression to represent 
trajectories as a function of time [10]. Second, dynamics are 
used to ensure that the resulting motions verify the mechanical 
laws [11]. Third, motion capture and motion modification 
have been widely used by computing a new motion in the 
neighbourhood of the original one [12]. 

The biomechanical model is a structure that represents the 
relationship between the objectives of the skills and the factors 
that produce those skills [13]. Laboratory systems were 
designed to measure more dimensions with greater precision, 
but these methods are complex and expensive [14]. Therefore, 
artificial neural networks (ANNs) can be likened to a flexible 
mathematical function that may have many configurable 
internal parameters. Once the neural network is trained, it can 
give new productions that have not previously been handled 
and they can attempt to predict new values as accurate output 
[15]. 

Previous studies used ANNs in the constructive analysis of 
biomechanics, which is considered more practical due to 
recent advances in technology [16]. But the use of ANNs in 
biomechanical analysis techniques still remains in its infancy 
[17]. Recently, studies have shown that ANNs may be fit tools 
for prediction in sports as well as biomechanics, for example 
the use of ANN to predict the hip, knee, and ankle sagittal 
moments during a vertical jump by using the output data from 
a force platform [18-22]. 

The output data from the neural network offer a nonlinear 
method for mapping the difficult-to define relationships 
between kinematics and kinetics parameters. They differ in 
input data used, the number of hidden layers, training data and 
other adjustable parameters. 

The standard feed forward neural networks for the 
representation of the mutual effect of this relationship have 
been used in some studies [23, 24]. ANNs have been widely 
and successfully used for generalizing the relationships 
between complex inputs and outputs in a large number of 
applications in studies of human locomotion, motor control 
and motor behavior [15, 25-30]. Therefore, it might be 
possible to design an ANN to predict the kinematic 
parameters of COM during handball throws using only a 
force platform output data. In this study, we explored the use 
of the artificial neural networks to provide a new method for 
predicting the kinematic parameters of COM during handball 
throws. 

One of the ANNs is the Multilayer Perceptron (MLP) that 
uses feed forward layers based on static back propagation 
training. This network is widely used in applications requiring 
static pattern classification. However, the previous studies did 
not figure out the use of ANNs to predict data through 
kinematics and kinetics analysis. 

Thus, the purpose of this study was to test a new method for 
predicting the kinematic parameters of COM during the 
handball throws by means of MLP neural network based on 

the output data from a force platform. 

2. Methods 

2.1. Subjects 

Ten male high level handball players participated in this 
study (age: 20.9±1.2 years; body mass: 82.4±7.53 kg; height: 
188.2±6.22 cm; experience: 8.2±1.03 years). They were part 
of a professional team that plays in the Egyptian Handball 
Super League. The players consent was obtained. This study 
was approved by the institutional ethics committee of studies 
and research. 

2.2. Protocol 

A 15-minute warm-up which included general and 
shoulder-specific mobility exercises, as well as stretch 
exercises and familiarization throws, were required before 
players’ attemps. The participant completed jump-throws 
from the 7-m penalty line using a standard men’s handball 
after three running steps. A total of five successful attemps 
were recorded for each participant, with one minute rest 
between attemps; with the best attemp for each participant was 
selected for analysis [31, 32]. 

2.3. Kinetic and Kinematic Data 

The kinetic and kinematic data during each jump shot trial 
were calculated. The subject performed the jump shot trials on 
a strain-gage force platform (MP4060®, Bertec Corporation, 
Columbus, OH, USA), which measured the ground reaction 
force (GRF). The data were sampled using an analog-to digital 
converter at a rate of 1000 Hz. An x, y, z orthogonal 
coordinate system was used to describe the forces (F) relative 
to the force plate. The sign convention designated vertical 
upward (Fz), lateral (Fx), and anterior (Fy) motions. In the 
next step, Newton's second law was used to calculate the 
acceleration via the following equation: a = F / m, when, 
a=acceleration, F=Force, and m=mass. 

The velocity and displacement were calculated using the 
integration of acceleration; the integration was calculated 
via the data analysis and graphing software (OriginPro 8.5 
SR1). These data were the lateral force (Force x), anterior 
force (Force y), vertical force upward (Force z), and 
magnitude (Force mag), lateral impulse (Impulse x), 
anterior impulse (Impulse y), vertical impulse upward 
(Impulse z), and magnitude (Impulse mag), lateral work 
(Work x), anterior work (Work y), vertical work upward 
(Work z), and magnitude (Work mag), as well as the target 
kinematic parameters in each dataset test (lateral 
displacement (Displacement x), anterior displacement 
(Displacement y), vertical displacement upward 
(Displacement z), and magnitude (Displacement mag), 
lateral velocity (Velocity x), anterior velocity (Velocity y), 
vertical velocity upward (Velocity z), and magnitude 
(Velocity mag), lateral acceleration (Acceleration x), 
anterior acceleration (Acceleration y), vertical acceleration 
upward (Acceleration z), and magnitude (Acceleration 
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mag). 

2.4. Artificial Neural Network Data 

Artificial neural network software was used to predict the 
target kinematic parameters of COM during the take-off phase 
of the handball shot (NeuroDimension, 2014®). Therefore, a 

multilayer perceptron breadboard (MLPs) was established .
The MLPs contained 12 processing elements (PEs), one 
output PE represents the target kinetic parameter, one hidden 
layer, and the option of output optimization was the “greedy 
search” (Figure 1). 

 

Figure 1. MLPs neural network breadboard. 

The net was fed with 159 datasets representing the 
kinematic data which included 70% of all data sets collected. 
In all, 15% of collected data was used as cross validation. 
Cross validation processes the lapse in a test set while the 
system is being prepared with the preparation set. It was 
realized that the mean squared normalized error (MSNE) 
would continue to diminish in the preparation set; however, it 
may begin to increase in the test set [23]. The other data that 
represented target kinematic parameters (displacement, 
velocity and acceleration) were marked as desired, and this 
was also 15% of the total data. 

The maximum epoch was 1000; this field specifies how 
many iterations (over the training set) would be done if no 
other criterion took effect. The mean squared error (MSE) is 
the parameter that terminates the training. The networks were 
trained one time in each predictive trial. The value of the MSE 
is the parameter for determining the fitness of the algorithm 
for prediction, so the result of the training was deemed 
acceptable when this value was lower than other MSE values 
during training iterations; it can show through early stopping 
of the network training (Figure 2). 

 

Figure 2. Cross validation (early stopping) during learning curve. 

Once networks had been trained, the values of the best 
weights (those that had the lowest level of error during the 
training) were loaded. Then, the MLPs were ready to run the 
test data. The option to “test network” was then selected. The 
test window contained different options, and thus, the 
regression options must be marked before running the test. 
The output data may be displayed in a text file, on the screen, 
or in an Excel spreadsheet containing the test report and test 
production. 

2.5. Statistical Analyses 

Pearson correlation was used to determine the relation 
between MLP neural network output data and the original 
analysis data. The mean values of different type of MLP 
neural network errors (Root mean square error (RMSE), 
Normalized root mean square error (NRMSE), Mean Absolute 
Error (MAE), Minimum Absolute Error, and Maximum 
Absolute Error) were used to determine the fit of prediction 
algorithm model. It could summarize performance in ways 
that disregarded the direction of over- or under-prediction, 
measuring how close predictions were to the eventual 
outcomes. Standard deviation as root-mean-square error also 
was calculated, as it represented the sample standard deviation 
of the differences between the neural network output values 
(kinematic parameters) and the original values. 

3. Results 

Table 1 shows the average of Pearson correlation (R) 
between the neural network output values (kinematic 
parameters) and the input values. It was 0.99 in all parameters. 
The mean values of different error types were also determined 
to measure differences between the neural network output 
values of the (kinematic parameters) and the original values. 

 



38 Abdel-Rahman Ibrahim Akl and Amr Abdulfattah Hassan:  An Artificial Neural Network Approach for  
Predicting Kinematics in Handball Throws 

Table 1. Correlation coefficient between MLPs output data and the original analysis data and of several error types also shown. 

Kinematic parameter Units RMSE NRMSE MAE MINAE MAXAE R 

Displacement x m 0.003 0.046 0.002 0.001 0.006 0.998 
Displacement y m 0.010 0.113 0.008 0.001 0.022 0.995 
Displacement z m 0.003 0.044 0.002 0.001 0.006 0.997 
Displacement magnitude m 0.079 0.157 0.069 0.000 0.114 0.990 
Velocity x m/s 0.010 0.009 0.008 0.001 0.022 0.998 
Velocity y m/s 0.007 0.002 0.006 0.001 0.015 0.999 
Velocity z m/s 0.050 0.021 0.046 0.017 0.083 0.999 
Velocity magnitude m/s 0.038 0.016 0.034 0.009 0.068 0.999 
Acceleration x m/s2 0.581 0.020 0.420 0.012 1.370 0.997 
Acceleration z m/s2 0.560 0.013 0.528 0.120 0.750 0.993 
Acceleration y m/s2 1.465 0.052 1.178 0.080 2.947 0.994 
Acceleration magnitude m/s2 0.934 0.030 0.840 0.198 1.522 0.999 

Notes. RMSE: Root mean square error, NRMSE: Normalized root mean square error, MAE: Mean Absolute Error, MINAE: Minimum Absolute Error, MAXAE: 
Maximum Absolute Error. 

 

Figure 3. Original data and actual network output data of: (a) displacement (x, y, z, and mag); (b) velocity (x, y, z, and mag); (c) acceleration (x, y, z, and mag). 

4. Discussion 

Two criteria were used to assess the validity of the model 
for predicting kinematic parameters: first, the correlation 
between the network output data and the original analysis data 
was very high, R > 0.99. This indicates that the results from 
the MLPs (predicted) were similar to those computed via 
integration of the ground reaction force in all tested variables 
(displacement x, y, z; velocity x, y, z; acceleration x, y, z) 
(Table 1; Figure 3). 

Second, the RMSE values for this neural model were the 
lowest for all predicted kinematic parameters during the 
network training (70% training, 15% cross validation and 
15%testing). In addition, the MAE was the lowest value at 
0.002: 1.17 during training and testing of the MLPs. This 
means that the difference between network output data and the 
original analysis data was too small and the MLPs neural 
network was successfully predicting the target parameters 
with a high accuracy. It seems now we can use only the data 
from the force platform to predict the kinematic data in useful 
ways and it would be possible to deal with huge amount of the 
data coming from the force platform. 

There are some advantages for using the MLPs neural 
network approach presented above: (1) it demonstrates the 
possibility of using the MLPs model to predict kinematic 
parameters at the take-off phase during the jump shot in 
handball, (2) It determines the correlation between network 
output data and the original analysis data, and (3) previous 

studies were dependent on the average of the parameters for 
all subjects whereas the presented method predicts kinematic 
parameters specific to a subject that is more accurate than the 
average with regards to kinematic parameters from all the 
subjects, especially when examining specific cases. 

5. Conclusions 

In conclusion, this study evaluated an MLP neural network 
approach for predicting kinematic parameters based on the 
output force plate parameters. Force, impulse, and work in 
three axes (x, y, z,) and magnitude (mag) were input 
parameters for the MLP neural network; and the target 
kinematic parameters were displacement, velocity, 
acceleration in three axes (x, y, z,) and magnitude (mag). The 
MLPs contained 12 processing elements, representing kinetic 
parameters, one hidden layer, and a “greedy search” output 
optimization. In all, 70% of all datasets were used to feed the 
MLPs neural network. The rest of the data, 30%, were equally 
used for cross validation and to test the network model. The 
value of the mean square error (MSE) was very small 
suggesting the goodness of the prediction algorithm. In 
addition, there was a very strong correlation between network 
output data and the original data obtained via integration. 
Therefore, the use of the MLPs neural network is an accurate 
method for predicting kinematic parameters based on kinetic 
parameters in the handball jump shot, under the conditions of 
this study. And more studies are needed that investigate the 
validity and accurate of using the MLPs on other performance 
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skills and biomechanical parameters. 
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